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Comments on “Conversions Between S, Z, Y,
h, ABCD, and T Parameters which are Valid

for Complex Source and Load Impedances”

Roger B. Marks and Dylan F. Williams

In his recent paper,i Frickey presents formulas for conversions

between various network matrices. Four of these matrices (Z, Y, h,

and ABCD) relate voltages and currents at the ports; the other two

(S and T) relate wave quantities. These relationships depend on the

definitions of the waves themselves in terms of voltage and current.

Frickey’s results are based on an unconventional definition of the

waves, whose resulting properties are unfamiliar to most microwave

engineers. As a result, application of his formulas can easily lead to

catastrophic errors.

The scattering and transmission matrices of classical microwave

circuit theory (e.g.. [ 1]–[3] ) relate the complex amplitudes of the

counterpropagating traveling waves in a transmission line. These

modal waves are solutions of Maxwell’s equations whose dependence

on the axial coordinate z is e*’ “I’, where T is the propagation

constant. Ratios of the traveling wave amplitudes can be measured

by classical slotted line techniques or with a network analyzer using

a thru-reflect-line (TRL) calibration [4].

The classical circuit theory also allows the possibility of renormal-

izing the traveling waves by introducing a reference impedance Z,,f

that may differ from the characteristic impedance 20. The resulting

quantities form the basis of a renorrnalized scattering matrix. For

instance, the renormalized reflection coefficient (one-port scattering

matrix) 17of a load of impedance ZIO.d, using a reference impedance

Z.ef, is simply

r = zl.ad – -& = IZload Zre{ – 1

z]O.d + z,,f zload/zref + 1 “
(1)

This familiar form is the basis of the Smith Chart, which provides a

convenient graphical method of transforming between the reflection

coefficient and the normalized load impedance zload /Z,,f, which, as

shown by (1), uniquely determines r.

Instead of traveling waves, Frickey [1] makes use of parameters

that Youla [5] defines and calls “waves”; a form of these parameters

known as “power waves” has previously been applied to microwave

circuits [6]. In spite of the terminology, Youla’s parameters have

little in common with waves. For instance, they do not depend

exponentially or even monotonically on L [4]. Furthermore, the
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Fig. 1. The Impedance of a small lumped resistor calculated, using

Z,ef = Zo, from scattering parameters measured by the multiline TRL

calibration. The solid curves are calculated from (1), the dashed curves from

(2).

urouerties of Youla’s parameters differ fundamentally from those of,,
the renormalized traveling waves. For example, Youla’s reflection

coefficient P is

~ = zl.ad – z,”ef _ ZIO.J /zref – Z:ef /zref

Zk,ad + Zref – zload /zref + 1

(2)

Since (1) does not apply. the Smith Chart is inapplicable to Youla’s

parameters. In fact, ~ is not even uniquely determined by Zload /Z,,f,

as is r. As an illustration, the renormalized reflection coefficient

of a short circuit (ZIO.d = 0) is always 17 = – 1, regardless

of reference impedance Z.,f. In contrast, (2) shows that Youla’s

reflection coefficient of a short is equal not to — 1 but to — z~~f /z,,f,

which has magnitude 1 but is not generally real.

No microwave instrumentation or calibration known to us measures

Youla’s waves [4]. Thus. the equations of the above paper cannot be

used to determine impedance parameters from measured scattering

parameters. To illustrate, we used the multiline TRL calibration [7]

to measure the scattering parameters of a small lumped resistor (with

measured dc resistance l?dc = 59.3 Q) embedded in a coplanar

waveguide. We measured the characteristic impedance Zc of the

transmission line using the technique of [8] and [9]. In applying

(1) and (2), we made use of the fact that Z,.f = 20, a condition

which, as is well known, is mandated by the TRL calibration [4],

rlO1. We determined the resistor impedance zload first using ( 1). The

result, shown in the solid curves of Fig. 1, close] y tracks the resistor’s

anticipated behavior: the real part is approximately 59 Q, and the

imaginary part is small, approaching zero approximately linearly at

low frequencies. When we instead used (2) tti calculate Zlo=d, under

the assumption that the measured reflection coefficient is actually r,

we found an anomalous result (dashed curves of Fig. 1).

Due to the unconventional definition of Youla’s waves, they

can easily lead to erroneous results. For example, consider the

simple flow graph of Fig. 2. When the two devices are joined at

a reflectionless connector, we generally assume that, as long as the

reference impedances at adjoining ports are identical, we can model

the circuit by using the simple boundary conditions
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Fig. 2. Signal flow graph of cascaded two-ports.

and

a~ = bz, (4)

In the classical waveguide circuit theory, these conditions arise

directly from the continuity of the voltage and current. They are so

fundamental as to be intuitive, and they form the basis of signal flow

graph analysis and indeed of circuit modeling in general. However,

when a and b are Youla’s waves, the boundary conditions (3) and

(4) do not apply. In other words, Youla’s waves are not subject

to signal flow graph analysis. A corollary is that Frickey’s defined

transmission matrices, formed from the scattering parameters using

his Table VI, do notjiirzction as transmission matrices. In other words,

let us denote the transmission matrix of A by T4, that of B by TB,
A~ A functional transmission mat~xand that of the circuit AB by T .

must satisfy the condition that TATB = T-4B. However, algebraic

manipulation of Frickey ’s expressions for the transmission matrix in

terms of voltage-cmi-ent parameters confirms that, for his definitions

T-4TB # T-AB . (5)

Equality in (5) holds true only when the reference impedances on

adjoining ports are complex conjugates, a restriction with numerous

negative implications. This result of the above paper demonstrates

that the counterintuitive nature of Youla’s waves can easily lead to

serious errors.

In the above paper, Frickey compares his results to those of a

commercial simulator. From that comparison, it appears that the

simulator also defines scattering parameters in terms of Youla’s

parameters. This suggests caution in the use of scattering parameters

based on a complex reference impedance.

An alternative to Youla’s theory is the general waveguide circuit

theory of [4], which preserves the essential features of the classi-

cal theory while allowing for complex characteristic and reference

impedances.
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Reply to Comments on “Conversions Between S,

Z, Y, h, ABCD, and T Parameters which are Valid

for Complex Source and Load Impedances”

D. A. Frickey

I would like to thank Mr. Marks and Mr. Williams for pointing

out the error in using the definition of a~ and b~ in the above paperl

as I was unaware of the implications involved. Also, I would like to

thank the authors for bringing to my attention their work m [1].
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Comments on “An Equivalent Transformation

for the Mixed Lumped Lossless ‘I%o-port

and Distributed Transmission Line”

R. Finkler and R. Unbehauen

Stimulated by previous articles [ 1]–[4] by the authors of the above

paper, 1 we have done related research. In doing so, we have found

additional results and synthesis applications ([5]. parts also in [6])

that we would like to communicate here briefly.

In [6] and (more conveniently in [5]) we gave formulas for

the transformation of the D section with l’Hospital’s rule already

incorporated, so that no indefinite expressions such as 0/0 (cf. p. 277,

text between (80) and (81)) occur. According formulas for the other

sections are also given in [5], [6]. These formulas seem to be more

suited for the use in the synthesis applications described below.

The equivalent transformation treated in the Theorem in Section

V of the above paper, which we in accordance to the idiomatic

usage in [1], [2] and due to [7] called extended Levy transformation,

can also be performed numerically. This can be done by solving a

system of ordinary differential equations, where the line length Z is

the independent variable and the coefficients of the numerators of the

lumped lossless two-port chain matrix elements are the functions to

be determined. Reference [5] contains some additional theorems on

the asymptotic behavior of this transformation for 1 - m.
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