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Comments on “Conversions Between S, Z, Y,
h, ABCD, and T Parameters which are Valid
for Complex Source and Load Impedances”

Roger B. Marks and Dylan F. Williams

In his recent paper,’ Frickey presents formulas for conversions
between various network matrices. Four of these matrices (Z, Y, /i,
and ABCD) relate voltages and currents at the ports; the other two
(S and 7) relate wave quantities. These relationships depend on the
definitions of the waves themselves in terms of voltage and current.
Frickey’s results are based on an unconventional definition of the
waves, whose resulting properties are unfamiliar to most mircrowave
engineers. As a result, application of his formulas can easily lead to
catastrophic errors.

The scattering and transmission matrices of classical microwave
circuit theory (e.g.. [11-[3]) relate the complex amplitudes of the
counterpropagating traveling waves in a transmission line. These
modal waves are solutions of Maxwell’s equations whose dependence
on the axial coordinate 7 is e™7*, where v is the propagation
constant. Ratios of the traveling wave amplitudes can be measured
by classical slotted line techniques or with a network analyzer using
a thru-reflect-line (TRL) calibration [4].

The classical circuit theory also allows the possibility of renormal-
izing the traveling waves by introducing a reference impedance Zyer
that may differ from the characteristic impedance Z,. The resulting
quantities form the basis of a renormalized scattering matrix. For
instance, the renormalized reflection coefficient (one-port scattering
matrix) I' of a load of impedance Zj,,4, using a reference impedance
Zrer, 1s simply

_ Zioad = et Zload [ Zrer — 1
Zload + Zref Zload/Zref +1 )

This familiar form is the basis of the Smith Chart, which provides a
convenient graphical method of transforming between the reflection
coefficient and the normalized load impedance Zioaa/Zrer. which, as
shown by (1), uniquely determines I'.

Instead of traveling waves, Frickey [1] makes use of parameters
that Youla [5] defines and calls “waves™; a form of these parameters
known as “power waves” has previously been applied to microwave
circuits [6]. In spite of the terminology, Youla's parameters have
little in common with waves. For instance, they do not depend
exponentially or even monotonically on - |4]. Furthermore, the
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Fig. 1. The impedance of a small lumped resistor calculated, using
Zief = Zo, from scattering parameters measured by the multiline TRL
calibration. The solid curves are calculated from (1), the dashed curves from

2).

properties of Youla’s parameters differ fundamentally from those of
the renormalized traveling waves. For example, Youla’s reflection
coefficient T is

Zload — Zr*ef — Zload/Zref - Z:ef/Zref

Ziowd + Zeet Doad [ Zrer + 1 )

Since (1) does not apply. the Smith Chart is inapplicable to Youla’s
parameters. In fact, I" is not even uniquely determined by Zioad/Zret»
as is I'. As an illustration, the renormalized reflection coefficient
of a short circuit (Zjoaq = 0) is always I' = -1, regardless
of reference impedance Z..¢. In contrast, (2) shows that Youla’s
reflection coefficient of a short is equal not to —1 but to —Z¢ /Z:.s,
which has magnitude 1 but is not generally real.

No microwave instrumentation or calibration known to us measures
Youla's waves [4]. Thus, the equations of the above paper cannot be
used to determine impedance parameters from measured scattering
parameters. To illustrate, we used the multiline TRL calibration [7]
to measure the scattering parameters of a small lumped resistor (with
measured dc resistance Ry = 59.3 Q) embedded in a coplanar
waveguide. We measured the characteristic impedance Z, of the
transmission line using the technique of [8] and [9]. In applying
(1) and (2), we made use of the fact that Z, — Z,, a condition
which, as is well known. is mandated by the TRL calibration [4],
[10]. We determined the resistor impedance Zi,aq first using (1). The
result, shown in the solid curves of Fig. 1, closely tracks the resistor’s
anticipated behavior: the real part is approximately 59 €2, and the
imaginary part is small, approaching zero approximately linearly at
low frequencies. When we instead used (2) to calculate Zigaa, under
the assumption that the measured reflection coefficient is actually I,
we found an anomalous result (dashed curves of Fig. 1).

Due to the unconventional definition of Youla’s waves, they
can easily lead to erroneous results. For example, consider the
simple flow graph of Fig. 2. When the two devices are joined at
a reflectionless connector, we generally assume that, as long as the
reference impedances at adjoining ports are identical, we can model
the circuit by using the simple boundary conditions

by = as (3)

r=

@
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Fig. 2. Signal flow graph of cascaded two-ports.
and
az = bz. (4)

In the classical waveguide circuit theory, these conditions arise
directly from the continuity of the voltage and current. They are so
fundamental as to be intuitive, and they form the basis of signal flow
graph analysis and indeed of circuit modeling in general. However,
when a and b are Youla's waves, the boundary conditions (3) and
(4) do not apply. In other words, Youla’s waves are not subject
to signal flow graph analysis. A corollary is that Frickey’s defined
transmission matrices, formed from the scattering parameters using
his Table VI, do not function as transmission matrices. In other words,
let us denote the transmission matrix of A by T, that of B by T8,
and that of the circuit AB by 7% A functional transmission matrix
must satisfy the condition that T4TF = 75, However, algebraic
manipulation of Frickey's expressions for the transmission matrix in
terms of voltage-current parameters confirms that, for his definitions

TATB £ TAB, 5)

Equality m (5) holds true only when the reference impedances on
adjoining ports are complex conjugates, a restriction with numerous
negative implications. This result of the above paper demonstrates
that the counterintuitive nature of Youla’s waves can casily lead to
serious errors.

In the above paper, Frickey compares his results to those of a
commercial simulator. From that comparison, it appears that the
simulator also defines scattering parameters in terms of Youla's
parameters. This suggests caution in the use of scattering parameters
based on a complex reference impedance.

An alternative to Youla's theory is the general waveguide circuit
theory of [4]. which preserves the essential features of the classi-
cal theory while allowing for complex characteristic and reference
impedances.
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Reply to Comments on “Conversions Between S,
Z, Y, hy ABCD, and T Parameters which are Valid
for Complex Source and Load Impedances”

D. A. Frickey

I would like to thank Mr. Marks and Mr. Williams for pointing
out the error in using the definition of @, and b, in the above paper’
as I was unaware of the implications involved. Also, I would like to
thank the authors for bringing to my attention their work m [1].
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Comments on “An Equivalent Transformation
for the Mixed Lumped Lossless Two-port
and Distributed Transmission Line”

R. Finkler and R. Unbehauen

Stimulated by previous articles [1]-[4] by the authors of the above
paper,’ we have done related research. In doing so, we have found
additional results and synthesis applications ([5]. parts also in [6])
that we would like to communicate here briefly.

In [6] and (more conveniently in [5]) we gave formulas for
the transformation of the D section with 1'Hospital’s rule already
incorporated, so that no indefinite expressions such as 0/0 (cf. p. 277,
text between (80) and (81)) occur. According formulas for the other
sections are also given in [5], [6]. These formulas seem to be more
suited for the use in the synthesis applications described below.

The equivalent transformation treated in the Theorem in Section
V of the above paper, which we in accordance to the idiomatic
usage in [1], [2] and due to [7] called extended Levy transformation,
can also be performed numerically. This can be done by solving a
system of ordinary differential equations, where the line length [ is
the independent variable and the coefficients of the numerators of the
Iumped lossless two-port chain matrix elements are the functions to
be determined. Reference {5] contains some additional theorems on
the asymptotic behavior of this transformation for I — oc.
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